FST 3-5 Notes

Topic: The Graph Scale-Change Theorem

GOAL: Apply the Graph Scale Change Theorem to all relations.

SPUR Objectives

C Use the Graph Scale-Change Theorem to find transformation images.

- D Describe the effects of translations and scale changes on functions and their graphs.
- J Apply the Graph-Translation Theorem or the Graph Scale-Change Theorem to make or identify graphs.

Vocabulary

horizontal and vertical scale change scale factor size change

horizontal scale factor A transformation that maps (x, y) to (ax, y) for all (x, y), where $a \neq 0$ is a constant.

vertical scale change A transformation that maps (x, y) to (x, by), where $b \neq 0$ is a constant.

scale change (in the plane) A transformation that maps (x, y) to (ax, by), where $a \neq 0$ and $b \neq 0$ are constants.

scale factor The nonzero constant by which each data value is multiplied in a scale change.

size change A scale change in which the scale factors are equal; a transformation that maps (x, y) to (kx, ky), where k is a nonzero constant.

Horizontal Scale Changes

Horizontal Scale Changes

Graph Scale-Change Rule: S(x, y) = (ax, by)

Where: a is the horizontal scale factor

b is the vertical scale factor

Recall

Translation Rule: $T(x,y) \rightarrow (x+h,y+k)$

In equation form, the 'opposite' happened – addition in the translation rule corresponded to subtraction in the equation

If y = f(x) was translated by the rule above, the new equation would be y - k = f(x - h)

The same 'opposite' happens between the rule for scale change and the equation

Multiplication in rule corresponds to division in equation

Division in rule corresponds to multiplication in equation

From Activity:

$$y = x^2 - 4$$

$$y = \left(\frac{x}{2}\right)^2 - 4$$

original equation

horizontal shrink $S(x,y) \rightarrow (\frac{x}{2},y)$ $(\frac{1}{2}x,y)$

horizontal stretch $S(x,y) \rightarrow (2x,y)$

$$y = \frac{x^2}{2} - 2$$

$$\frac{y}{2} = x^2 - 4$$

$$y = 2(x^2 - 4)$$

$$y = 2x^2 - 8$$

Vertical shrink S(x,y)→(x, ½) (x,½y) Vertical stretch S(x,y)→(x,2y) horizontal scale change (ax,y) when a>1 horizontal stretch vertical scale change (x,by) when a>1 horizontal stretch when b>1 vertical stretch when b>1 vertical stretch

Additional Example 1

Sketch and compare the graphs of y = |x| and $\frac{y}{4} = |6x|$. Describe the y = 4/6x transformation that maps the first graph onto the second.

e quation

A multiplication in rule corresponds to division in equation

* Division in rule corresponds to multiplication in equation

 $S(x,y) \rightarrow (\frac{x}{6}, 4y) \rightarrow (\frac{1}{6}x, 4y)$ horizontal Shrink by 1/6 Vertical Stretch by 4

Additional Example 2

The line 41x - 29y = 700 contains the points (39, 31) and (10, -10). Use this information to obtain two points on the line with equation 20.5x - 87y = 700.